PCI Express® Gen 4 & Gen 5 Card Edge Connectors

Product Presentation

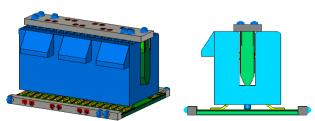
Amphenol Information Communications and Commercial Products

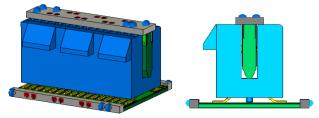
Amphenol ICC

AGenda

- 1. Value Proposition
- Product Overview
- 3. Signal Integrity Performance
- 4. Features & Benefits
- Part Numbers
- 6. Markets & Applications

Value Proposition

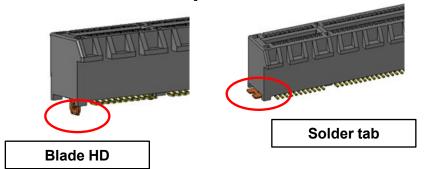



- Amphenol PCIe Gen 4 & Gen 5 CEM connectors meet and outperform industry standard PCIe 4.0 & 5.0 (Proposed) requiring higher speed performance. The optimized series supports backwards mating and is footprint compatible with PCIe 3/2/1.
- These 1.00mm pitch, vertical card edge connectors enable all Generations of PCI Express® signaling in desktop PCs, workstations, and servers. The connector designs provide support for 2.5GT/s (Gen 1), 5.0GT/s (Gen 2), 8.0GT/s (Gen 3) and recently upgrade to 16GT/s (Gen 4), even further to 32GT/s per differential signal pair.
- The base connector family provides x1, x4, x8, or x16 link widths to suit different bandwidth requirements. The basic bandwidth (x1) version supports a single PCI Express lane and is typically used for I/O cards in desktop PCs. The x4 and x8 connectors provide 64 and 98 contacts, respectively, for server I/O. The high bandwidth versions (x16 lanes and higher) are used for applications that require even more bandwidth, such as graphics cards in desktop PCs or riser cards in servers.
- Amphenol's expansive range of vertical PCIe Gen 4 and Gen 5 connectors will include options for surface mount (SMT), through hole solder, press-fit (PF) and straddle mount terminations.
- Apart from vertical type PCIe Gen 4, we also provide right angle SMT (5.8mm stack height is being tooled up, 17.1mm will be tooled up soon)

Product Overview

- Extending differential signaling to 16GT/s and 32GT/s for next Generation systems
- PCIe connector overpass Gen 4 and Gen 5 high speed performance
 - Footprint backward compatible with Gen 3/2/1 (Straddle mount excepted)
 - 85ohms reference impedance
 - Data rate: 16 GT/s, up to 32GT/s.
- Product configuration includes x1, x4, x8,x16 (36/64/98/164), extend to X24, X32 for riser card application.
- PCB module expectation: Golden finger(add-in card):
 - Pad dim (Gen 4) = 0.70x3.91mm;
 - Pad dim (Gen 5) = 0.60x3.00mm (Proposed);
 - Thickness=1.57+0.13mm
- Reference to Gen 3 electrical, mechanical and environment spec
- Halogen-free compliant
- Amphenol Vertical & right angle PCle Gen 4 & Gen 5 Project timeline
 - Vertical SMT Gen 4 & Gen 5 in mass production
 - Vertical TH Gen 4 in mass production
 - Vertical PF Gen 4 in mass production
 - Straddle mount Gen 4 & 5 tooled and samples ready
 - right angle Gen 4 SMT –ready by Q3' 2019

Overall Features & Benefits



Features	Benefits
■ A variety of termination types are available	 Able to meet different customer soldering requirements
 Aside from X1, X4, X8, X16 standard links as per PCI-SIG CEM specification, X24, X32 are also available 	 Our connectors provide excellent performance and additional options for extreme bandwidth application
■ Backward mating and footprint compatible	 Outperform Gen 4/5 specification, but also backward compatible to Gen 1/2/3 specification, with the exception of Gen 5 straddle mount
 Capable to support up to 32GT/s without altering design 	 Customers can upgrade directly to next- Generation systems without additional cost in system redesign
■ RoHS compliant	 Fully complies with environmental, health and safety requirements
Low-Halogen material	 Meets next-Generation requirements

More User-Friendly Design Features to Support Customer Extreme Applications

 PCIe SMT with blade hold down or solder tab options.

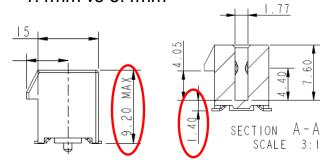
- 230pin (x24), 280pin (x32) PCIe
 Gen 4 SMT
- Support riser card application with increased number of required lanes


SMT with blade hold down and latch

 Latch can help to lock module card for high criterion shock &vibration test

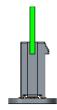
SMT without ridges

To accommodate with longer pin add-in card

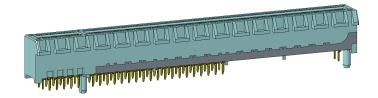


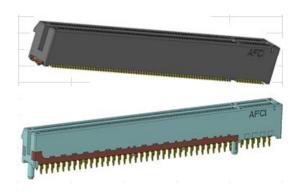
More User-Friendly Design Features to Support Customer Extreme Applications

Ultra Low Profile SMT


- Total height vs Standard PCIe: 9.2mm vs 11.25mm
- Seating height vs Standard PCIe: 1.4mm vs 3.4mm

Extended height SMT (will tool soon)


- Higher seating height by increasing seating height
- Allow other components layout under add-

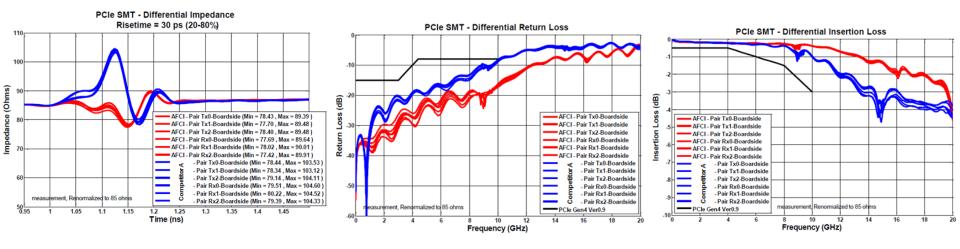

TH with 98pos in 164pos Housing

To accommodate with shorter pin add-in card

Open side wall SMT & TH &PF

To accommodate with longer add-in card

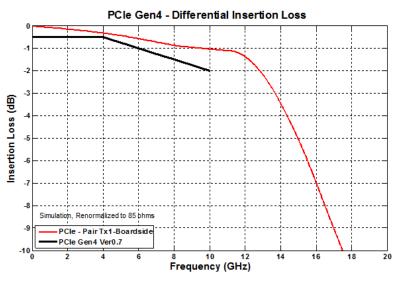
Base Part Numbers


Description	Performance	Termination	Position	Part Numbers
PCIe Gen 5	32GT/s	Vertical SMT	36, 64, 98, 164pos	10146070*
PCIe Gen 5	32GT/s	Straddle mount	36, 64, 98, 164pos	10153226*
PCIe Gen 4	16GT/s	Vertical SMT	36, 64, 98, 164pos	10146065*
PCIe Gen 4	16GT/s	Vertical SMT ULP	36, 64, 98, 164pos	10146788*
PCIe Gen 4	16GT/s	Vertical SMT high rise	36, 64, 98, 164pos	10153927*
PCIe Gen 4	16GT/s	Vertical SMT	230, 280pos	10139595*
PCIe Gen 4	16GT/s	Vertical SMT with latch	36, 64, 98, 164pos	10147430*
PCIe Gen 4	16GT/s	Vertical SMT open wall	36, 64, 98, 164pos	10146067*
PCIe Gen 4	16GT/s	Vertical PF	36, 64, 98, 164pos	10145445*
PCIe Gen 4	16GT/s	Vertical PTH	36, 64, 98, 164pos	10142333*
PCIe Gen 4	16GT/s	Vertical PTH with latch	36, 64, 98, 164pos	10152821*
PCle Gen 4	16GT/s	Vertical PTH open wall	36, 64, 98, 164pos	10148195*
PCIe Gen 4	16GT/s	Straddle mount	36, 64, 98, 164pos	10146027*
PCIe Gen 4	16GT/s	right angle SMT	36, 64, 98, 164pos	10151422*

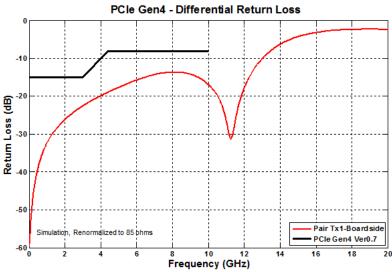
^{*}denotes base part number. Please contact Amphenol ICC for complete part numbers.

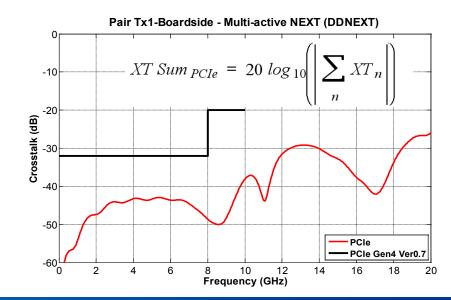
SI Performance competition Analysis

Amphenol Vertical Gen 4 SMT vs Competitor

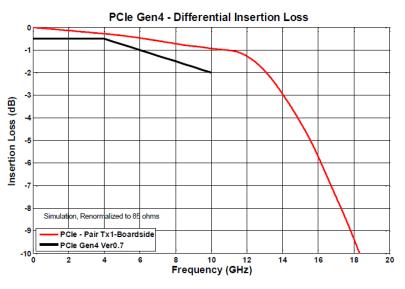

This measurement test done in our SI lab based on same test method setting up with both competitor's sample and our sample !!

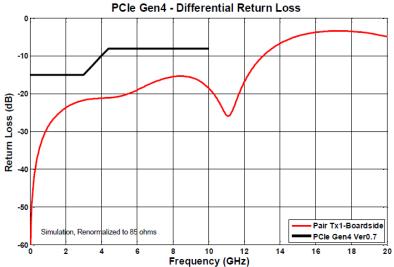
Amphenol's CEM connector has superior impedance, insertion loss and return loss when compared to competitors' products in the market

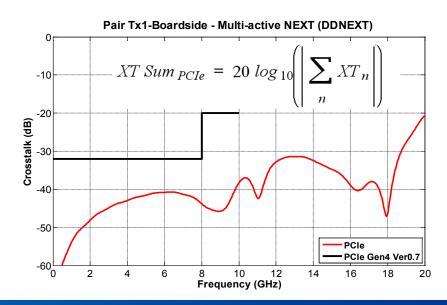

Vertical PCIe Gen 4 Press-Fit


SI simulation performance @ 16GT/s

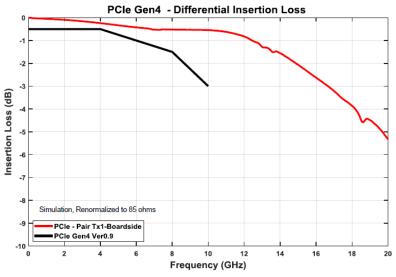
- Superior insertion loss up to 10GHz
- Well engineered crosstalk with sufficient margin
- Competitive return loss with good margin up to 10GHz

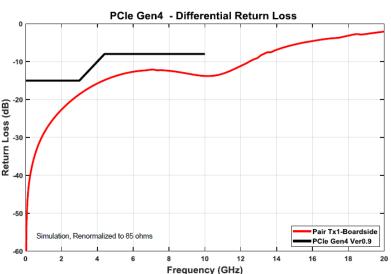



Vertical PCIe Gen 4 PTH

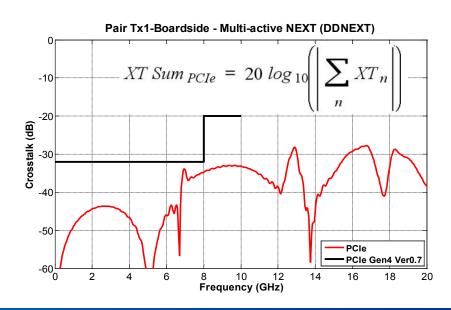

SI simulation performance @ 16GT/s

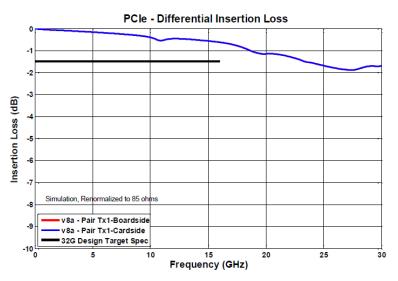
- Superior insertion loss up to 10GHz
- Well engineered crosstalk with sufficient margin
- Competitive return loss with good margin up to 10GHz

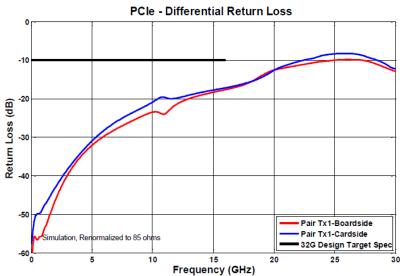


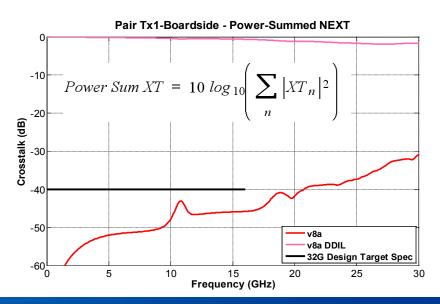


PCle Gen 4 Straddle Mount

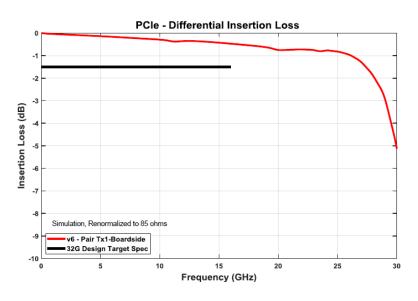

SI simulation performance @ 16GT/s


- Superior insertion loss up to 10GHz
- Well engineered crosstalk with sufficient margin
- 3. Competitive return loss with good margin up to 10GHz

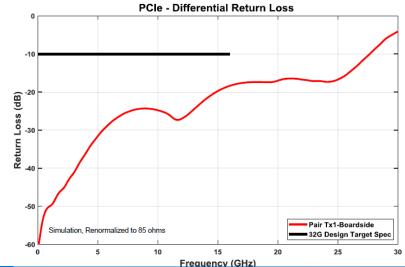

PCle Gen 5 SMT

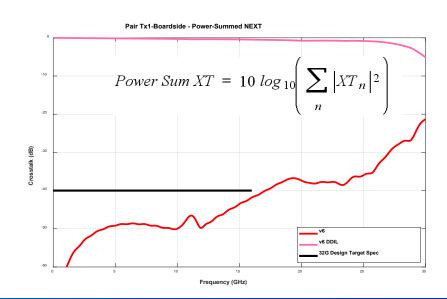

SI simulation performance @ 32GT/s

- Superior insertion loss up to 16GHz
- Well engineered crosstalk below -40dB up to 16GHz
- 3. Return loss with good margin up to 16GHz



PCle Gen 5 Straddle Mount


SI simulation performance @ 32GT/s



- Well engineered crosstalk below -40dB up to 16GHz
- Return loss with good margin up to 16GHz
- First product to the market

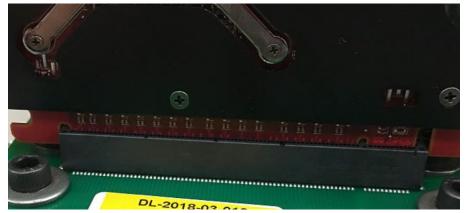
Our PCIe Gen 4 Can Withstand Special Weigh Storage & GPU Shock Test

TEST METHODS/REQUIREMENTS

Test Items	Test method	Condition	Requirement
Visual Examination	EIA-364-18B	10x magnification	No detrimental condition
LLCR	EIA-364-23C	20mV max, 100mA max	Initial LLCR ≤30mΩ, After test: ∆R ≤10mΩ
Mechanical Shock	EIA-364-27C	Condition - A (50G, 11ms, half-sine pulses type) +Z axis 3times and then –Z axis 3times	No damage

Our PCIe Gen 4 Can Withstand Special Weight Storage & GPU Shock Test

MECHANICAL SHOCK TEST RESULTS


Step	Test	Requirement	Step Description	Results	Comment
1	Visual Examination	No detriment	Initial	No detriment	Pass
2	LLCR	≤30mΩ	Initial LLCR	≤12.67mΩ	Pass
3	Mechanical Shock*	No damage	Mechanical Shock	No damage	Pass
4	LLCR	∆R ≤10mΩ	Final LLCR	∆R ≤9.78mΩ	Pass
5	Visual Examination	No detriment	Final	No degradation Details see Fig. 4~6	Pass

*. Mechanical shock testing was performed, and result reported, under the KING DESIGN LAB report number

180315-03-ST03.

Conclusion:

Apart from excellent electronic performance, our connector is also with much more robust mechanical performance (without any deformation or crack) while withstanding high weight special GPU card shock testing

Parts after shock & vibration testing

Markets & Applications

- Servers
- Workstations

- Desktop PCs
- Notebook PCs

- Routers
- Switches
- Base Stations

Embedded Systems

Amphenol ICC

Thank You!